
6



Guest Reviewers

Ivan DUDURYCH

Tahir LAZIMOV

Murari M. SAHA

Editorial Board

Piotr PIERZ ! art manager

Miros aw UKOWICZ, Jan I YKOWSKI, Eugeniusz ROSO OWSKI,

Janusz SZAFRAN, Waldemar REBIZANT, Daniel BEJMERT

Cover design

Piotr PIERZ

Printed in the camera ready form

Department of Electrical Power Engineering

Wroc aw University of Technology

Wybrze e Wyspia skiego 27, 50-370 Wroc aw, Poland

phone: +48 71 320 35 41

www: http://www.weny.pwr.edu.pl/instytuty,52.dhtml; http://www.psc.pwr.edu.pl

e-mail: wydz.elektryczny@pwr.edu.pl

All right reserved. No part of this book may be reproduced by any means,

electronic, photocopying or otherwise, without the prior permission

in writing of the Publisher.

© Copyright by Oficyna Wydawnicza Politechniki Wroc awskiej, Wroc aw 2015

OFICYNA WYDAWNICZA POLITECHNIKI WROC AWSKIEJ

Wybrze e Wyspia skiego 27, 50-370 Wroc aw

http://www.oficyna.pwr.edu.pl

e-mail: oficwyd@pwr.edu.pl

zamawianie.ksiazek@pwr.edu.pl

ISSN 2084-2201

Print and binding: beta-druk, www.betadruk.pl



composite load model, nonlinear optimization,

nonlinear least squares, genetic algorithms,

sequential quadratic programming

Pawe  REGULSKI*

ESTIMATION OF COMPOSITE LOAD MODEL PARAMETERS

AS A CONSTRAINED NONLINEAR PROBLEM

This paper presents the results of application of sequential quadratic programming to the estima-

tion of the unknown composite load model parameters. Traditionally applied estimation methods,

such as nonlinear least squares or genetic algorithms, suffer from a number of issues. Genetic algo-

rithms exhibit premature convergence and require high computational resources and nonlinear least

squares method is very sensitive to the initial guess and can diverge easily. This paper provides

a comparison of all three methods based on computer-generated signals serving as field measure-

ments. Accuracy and precision are assessed as well as computational requirements.

1. INTRODUCTION

Loads are one of the most uncertain elements of power systems. They play a key

role in power system analysis and inaccurate modeling of loads may result in errone-

ous assessment of voltage stability [1], [2] as well as other types of studies, such as

those on transient stability or load shedding [3], [4]. This becomes unacceptable in the

current trend, where environmental considerations push the operating point of power

systems closer to their stability limits.

Measurement-based load modeling [4], [5], in which the load characteristics are

extracted through a parameter estimation procedure from appropriate field measure-

ments, offers the means for obtaining accurate load models. In such an approach, the

aim is to minimize the difference between the output of an assumed load model and

the corresponding field measurements. The final reliability and accuracy of the load

model relies heavily, among other things, on the selected parameter estimation tech-

nique, which is especially true in the case of a composite load (CL) model. The CL
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model is a highly nonlinear model of an induction motor (IM) connected in parallel

with a static load. It is used typically to model loads dominated by IMs, which may

include not only industrial loads (large machines) but also residential and commercial

loads (smaller, single-phase machines). Traditionally, methods such as nonlinear least

squares (NLS) [6] or genetic algorithms (GA) [7] have been employed to solve the

problem of finding the unknown load model parameter. However, these methods suf-

fer from several flaws. NLS is prone to divergence and, as a deterministic method, is

shows strong sensitivity to the initial guess. GA on the other hand, may exhibit pre-

mature convergence and it is more time-consuming then NLS. Moreover, both of the

methods disregard the fact that the estimation of parameters of the CL model, from its

definition, is a constrained problem. This paper addresses this particular issue by ap-

plying sequential quadratic programming (SQP) method, which is known to be effi-

cient in solving problems of similar nature [8]. In the area of power systems it has

been already successfully applied to solving the hydro unit commitment problem [9]

as well as the optimal power flow problem [10].

2. COMPOSITE LOAD MODEL

The CL model is the most complex widely used load model and, according to a re-

cent survey [11], about 30% of utilities around the world use it for dynamic power

system studies. It is a voltage dependent model including a 3rd order IM model con-

nected in parallel with a static load model. The IM model adopted in this work can be

found in [5] and its full derivation is presented in [2]. The static part of the model is

described by an exponential load (EL) model with the following equations:

0
0 V

VPP SS (1)

0
0 V

VQQ SS (2)

where V0 is the pre-disturbance voltage in pu, PS0 and QS0 are the pre-disturbance ac-

tive and reactive power consumed by the static load, respectively, in W and var. PS

and QS are the static load power demands, respectively, in W and var,  and  are the

static exponents and V is the actual rms voltage in pu.

The complete vector of unknown model parameters to be estimated is defined as

follows:

],,,,,,,,,,,[ 0TKBAXXRXRH Pmrrss (3)
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where H is the inertia constant in s, Rs is the stator resistance in pu, Xs is the stator

reactance in pu, Rr is the rotor resistance in pu, Xr is the rotor reactance in pu,

Xm, is the magnetizing reactance in pu, A and B are the torque coefficients and T0

is the nominal torque at nominal speed in pu. The parameter KP is defined as fol-

lows:

0

0

P
P

K M
P (4)

where PM0 is the initial active power consumed by the IM, in W, and P0 is the

pre-disturbance active power measured at the load bus in W. Table 1 presents

the searching space for the parameters defined in (3). It has been selected based on

[1] and [2] to cover a wide range of types of motors and characteristics of static

loads.

Table 1. Selected ranges of the CL model parameters

Searching space

min max

H 0.200 2.000

Rs 0.001 0.100

Xs 0.050 0.200

Rr 0.010 0.100

Xr 0.100 0.300

Xm 2.000 4.000

A 0.000 1.000

B 0.000 1.000

Kp 0.200 1.000

T0 0.200 1.000

0.000 4.000

0.000 4.000

3. SEQUENTIAL QUADRATIC PROGRAMMING

The SQP approach has been extensively used in 1970s [12]. Its high efficiency

and accuracy, when compared to other optimization methods, has been further

proved by Schittkowski on a large number of test examples [13]. The SQP pro-

vides a framework for solving general nonlinear programming problems of the

following form:
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where x R
n, f is the objective function, ci, i  are the equality constraints and ci,

i  are the inequality constraints.

The main concept behind the SQP approach is to model the problem (5) as a se-

quence of quadratic problems of the following form:

pppxx
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where index k is the iteration number, p is the search direction in the quadratic prob-

lem,  is the gradient operator and 2
xx  is the Hessian operator with respect to x. The

Lagrangian function k is described as follows:

)()( k
T
kkk cf xx (7)

where k is a vector of Lagrange multipliers.

The quadratic problem (6) is solved using the active set strategy, which is an itera-

tive approach. It starts with an initial guess of an active set , which for any feasible x

is a set of the equality constraint indices  together with the indices of the inequality

constraints for which ci(x) = 0:

}0)({)( xx ici (8)

The active set strategy solves this equality constrained problem using the con-

straints, indices of which are included in the current active set . In each iteration it

performs the following three major tasks:



Estimation of Composite Load Model Parameters as a Constrained Nonlinear Problem 37

a) it finds the direction towards the solution and calculates the length of the step,

b) it checks whether the step is violating any constrains, indices of which are not

included in  and adds them to  if that is the case and

c) it removes the inequality constraint indices from  if the Lagrange multipliers

corresponding to those constraints become negative, which suggests that the

objective function can be further minimized by moving away from those con-

straints.

The above method terminates once the solution to the quadratic sub-problem is

equal to 0 (the calculated direction increment at the current iteration is equal to 0)

[8].

The final solution of the quadratic problem (6) is used to update the xk:

pxx kk 1 (9)

where  is the step-length coefficient obtained using a line search approach to mini-

mize a merit function, which ensures a sufficient decrease in the objective function

[8]. After that, the iteration number k is incremented and a new quadratic problem is

formulated. The procedure repeats until xk meets the Karush!Kuhn!Tucker (KKT)

optimality conditions [8].

The above paragraphs gave an introduction to what the sequential quadratic pro-

graming is. However, to implement it for solving the problem of estimation of un-

known load model parameters, the suitable objective function of the problem must be

defined. It must be followed with appropriate constraints.

For the CL model, the objective function for a given n samples of input data, i.e.

measurements, can be defined as follows:

n

k

CLMkmkCLMkmk QQPP
n

1

22 ]))(())([(
1

min (10)

subject to the bound constraints defined in Table 1 and the inequality A + B  1 im-

posed on the torque coefficients [5]. Pmk and Qmk are the k-th sample of measured

active and reactive powers, respectively, in W and var and PCLMk and QCLMk are the

k-th sample of estimated active and reactive powers, respectively, in W and var.

4. RESULTS

SQP has been tested and compared against the traditional methods (NLS and GA)

in a series of computer simulations. Firstly, 6 test voltage signals have been generated
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to excite the CL model. These include step changes and ramps of different magnitudes

and are depicted in Figure 1.
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Fig. 1. Voltage signals used to excite the CL model

Based on the 6 generated voltage signals, active and reactive power responses of

the CL model were simulated for a given set of parameters. These responses are de-

picted in Figure 2. Such a set of computer-generated signals was assumed as field

measurements for the purpose of the estimation process.

Initial conditions for each method were obtained from the same set of 100 parame-

ter vectors randomly generated from the assumed searching space (Table 1). In the

case of SQP and NLS, each vector was used as a starting point of the procedure, for

a total of 100 runs for each method. On the other hand, GA uses the whole set of vectors

as an initial population. However, due to the nature of the method, which is driven to

an extent by random processes, the estimation procedure has been repeated 100 times

to assess its average performance. In this way, each method returned 100 solutions,

which allowed for a reasonable comparison.
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Fig. 2. Active and reactive power responses of the assumed CL model

In the estimation process, 2 out of 6 data sets have been used. That includes

measurement 2 (voltage step change) and measurement 4 (voltage ramp). This al-

lows covering a wider range of the model"s responses and improves the generality

of the identified parameters. It is important to notice that using insufficient amount

of data at the training stage may result in loss of generality (overtraining), which

manifests itself in a very good fit at the training stage and a poor fit at the valida-

tion stage. In this case, the estimation result has been validated against all 6 data

sets (cases) and the results have been presented in Tables 2 and 3. Firstly, it can be

observed that SQP achieves the smallest average relative errors in 100 trials and

NLS achieves the highest (Table 2). Secondly, standard deviation of the relative

errors presented in Table 2 shows that SQP is also the most consistent method,

which makes it more accurate and precise than the other two approaches. The re-

sults also confirm that NLS is very sensitive to the initial guess and can easily di-

verge. Figure 3 depicts comparison of all 3 methods in their best trial. It can be

concluded that NLS can achieve accuracy similar to that of SQP, but only if the

initial guess is appropriately selected.
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Table 2. Average relative errors obtained for each case (based on 100 trials)

GA NLS SQP

Perr [%] Qerr [%] Perr [%] Qerr [%] Perr [%] Qerr [%]

Case 1 0,163 0,645 2,042 7,803 0,009 0,081

Case 2 0,240 1,234 2,813 18,919 0,008 0,057

Case 3 0,139 0,489 1,810 7,012 0,006 0,065

Case 4 0,136 0,628 1,988 12,018 0,006 0,038

Case 5 0,185 0,949 2,370 15,905 0,007 0,041

Case 6 0,195 0,784 2,448 9,179 0,011 0,092

Table 3. Standard deviation of the relative errors obtained for each case (based on 100 trials)

GA NLS SQP

Std. Perr Std. Qerr Std. Perr Std. Qerr Std. Perr Std. Qerr

Case 1 0,237 0,420 3,064 14,079 0,010 0,047

Case 2 0,363 1,245 3,744 36,769 0,014 0,086

Case 3 0,170 0,356 3,011 13,780 0,009 0,038

Case 4 0,155 0,824 2,815 23,531 0,009 0,066

Case 5 0,254 1,096 3,212 31,190 0,010 0,079

Case 6 0,320 0,486 3,293 16,596 0,014 0,053
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Fig. 3. Comparison of best estimations achieved by each method (validation using case 2)
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The selection of the training set in this particular case turned out to be successful.

There are no obvious discrepancies between average relative errors obtained for

training cases and validation cases (Table 2). Other combinations of cases forming the

training set have been tested with very similar results. It has been also observed that

voltage step changes reveal more dynamic properties than voltage ramps and it ad-

visable always to include a voltage step change in the training set for more reliable

results.

In terms of computational performance, the average execution times for each

method are presented in Table 4. In this particular test, SQP is over two times slower

than NLS, but still much faster than GA. It should also be noted that the implementa-

tion of GA, in this case, takes advantage of parallel computing and it utilizes 4 avail-

able cores of the CPU. On a single-core CPU the average execution time of GA would

be approximately 4 times higher.

Table 4. Average execution times in seconds

(based on 100 trials)

GA NLS SQP

184 9 23

5. CONCLUSIONS

This paper proposed the application of SQP to estimate the unknown parameters of

the CL model from field measurements. This method takes into account constrains,

which was impossible with the use of traditional methods such as NLS or GA. SQP

achieves highest accuracy and precision without the loss of the generality of the as-

sumed load model. Its execution time, although higher than that of NLS, still allows

for online load monitoring with the assumption that appropriate voltage disturbances

do not occur too often.

The execution time of SQP, when compared to NLS, reflects its more complex im-

plementation, which might be recognized as a disadvantage. However, the benefits of

this approach outweigh this flaw significantly.

The preliminary tests presented in this paper have provided very promising results.

In the next step, SQP should be examined using either laboratory or field measure-

ments to ensure that the benefits of using SQP can also be achieved in practice.
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