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ESTIMATION OF COMPOSITE LOAD MODEL PARAMETERS 

USING IMPROVED PARTICLE SWARM OPTIMIZATION 

Power system loads are one of its crucial elements to be modeled in stability studies. However 

their static and dynamic characteristics are very often unknown and usually changing in time (daily, 

weekly, monthly and seasonal variations). Taking this into account, a measurement-based approach 

for determining the load characteristics seems to be the best practice, as it updates the parameters of  

a load model directly from the system measurements. To achieve this, a Parameter Estimation tool is 

required, so a common approach is to incorporate the standard Nonlinear Least Squares, or Genetic 

Algorithms, as a method providing more global capabilities. In this paper a new solution is proposed - 

an Improved Particle Swarm Optimization method. This method is an Artificial Intelligence type 

technique similar to Genetic Algorithms, but easier for implementation and also computationally 

more efficient. The paper provides results of several experiments proving that the proposed method 

can achieve higher accuracy and show better generalization capabilities than the Nonlinear Least 

Squares method. The computer simulations were carried out using a one-bus and an IEEE 39-bus test 

system. 

1. INTRODUCTION 

Power system loads have a significant impact on the system stability. It is known 

that the load dynamic response is one of the key elements driving the system into 

dangerous voltage instability or even to catastrophic voltage collapse [3]. Some of the 

power systems studies, including studies of interarea oscillations, voltage stability and 

long-term stability, often require consideration of dynamic loads. Taking also into 

account that typically motors consume 60 to 70 % of the total energy supplied by  

a power system, Induction Motors (IM) have become one of the crucial elements to be 

modeled [6]. On the other hand, due to technological progress, nowadays more and 
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more Intelligent Electronic Devices are deployed in power systems, including newly 

emerging Wide Area Monitoring Systems (WAMS), which are capable of providing 

huge amounts of data in real-time. To take the advantage of this fact, it seems that the 

measurement-based approach to Load Modeling might be a more convenient and effi-

cient option [1,7,8,9]. This technique is utilizing previously captured data for the pur-

pose of estimation of load models’ parameters by minimizing the difference between 

the measurements and the model’s output. Such method can efficiently increase the 

quality of modeling by updating the parameters whenever inacceptable mismatch is 

detected. 

 Selection of appropriate load model is probably the most challenging task, thus it 

needs a special consideration. Designers have to consider which phenomena are of 

interest in particular case. Load being a combination of heating and lighting devices 

will require a model with slowly recovering power, therefore a simple Exponential 

Recovery Model [2] would be suitable in this case. On the other hand, when Induction 

Motors are the dominant element of a load mix, which is assumed to be the case in 

this paper, then a Composite Load Model (CLM) [1,7,8] should be selected. A CLM 

is simply an Induction Motor model supported by a Static Load (SL) model, which 

takes into account any non-dynamic devices. In Section II the CLM adopted in this 

paper will be in detail described. 

Most of the dynamic load models are highly nonlinear, thus making the estimation 

process difficult and challenging. Traditionally, the Nonlinear Least Squares (NLS) 

method has been used as a basic tool for obtaining the model’s parameters. However, 

researchers also have demonstrated a huge interest in Artificial Intelligence (AI) 

based methods, which could overcome the ‘local’ limitation of the standard NLS 

method. So far Genetic Algorithms (GA) [7], [9] have been successfully introduced to 

the field of load modeling and in this paper the authors would like to propose an in-

teresting alternative to GA, another AI technique called Improved Particle Swarm 

Optimization (IPSO) [5]. Both methods give similar results, however IPSO is easier 

for implementation and computationally more efficient. Moreover, the technique can 

achieve better accuracy than the NLS method, which will be demonstrated in this 

paper. 

2. COMPOSITE LOAD MODEL 

Composite Load Model is a voltage dependant dynamic model represented by an 

Induction Motor model connected in parallel with a Static Load model. A clear and 

thorough derivation of the most commonly used IM model is given in [6]. For repre-

sentation in power system stability studies, stator transients are neglected, which re-

sults in the following three dynamic equations describing the load model: 
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and two algebraic equations representing the stator current: 
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where d and q indices indicate the d-axis and q-axis of the d-q reference frame, re-

spectively, s and r indices indicate the stator and rotor values, v’ is the voltage behind 

the transient reactance, in pu, H is the motor inertia constant, in s,  is the rotor speed, 

in pu, T’0 is the transient open circuit time constant (3), in s, X’ is the transient reac-

tance (4), in pu, RS is the stator resistance, in pu, X is a sum of the stator reactance XS 

and the magnetizing reactance Xm, in pu, Te is the electromagnetic torque, in pu, Tm is 

the load torque, in pu and dr/dt is the slip speed (5), in rad/s. 
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where Rr and Xr are the rotor resistance and reactance, respectively, in pu, s and r 

are the synchronous and rotor speed, respectively, in rad/s. It should be noted that in 

(1) r is expressed in pu. 
 The electromagnetic and load torques are calculated as follows: 

 ' '

e d ds q qsT v i v i   (6) 

 2

0( )m r rT A B C T     (7) 

where T0 is the nominal torque at nominal speed, in pu, A, B and C donate the torque 

coefficients: proportional to the square of the speed, proportional to the speed and 
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constant coefficient, respectively. In addition the coefficients obey the following 

equality: 

 2

0( )m r rT A B C T     (8) 

The active and reactive powers are calculated as follows: 

 
IM d d q qP v i v i   (9) 

 
IM q d d qQ v i v i   (10) 

The static part of the model can be described using the well known Exponential Load 

Model (ELM) [3]: 
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where V0 is the pre-disturbance voltage, in pu, P0 and Q0 are the pre-disturbance ac-

tive and reactive power, respectively, in W and var. PS and QS are the static load pow-

er demands, respectively, in W and var, α and β are the static exponents. 

 The total power output of the CLM is described as follows: 

 
CLM b IM SP S P P   (13) 

 
CLM b IM SQ S Q Q   (14) 

where Sb is the induction machine power base, in VA. 

To obtain an output from the above presented model, the following vector with 13 

unknown parameters needs to be determined: 

 ' '

0 0 0 0[ , , , , , , , , , , , , ]s bH R T T X X S A B P Q    (15) 

The initial values of the 3 states of the IM model, ’d, ’q and r, are obtained by 

solving the model with respect to the initial (pre-disturbance) voltage. Such approach 

reduces the dimension of the problem by 3 and therefore speeds up the convergence 

and increases the accuracy of the final solution. 

3. PARAMETER ESTIMATION 
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Traditionally, to estimate the parameter vector (13) of the Composite Load Model, 

the Nonlinear Least Squares method has been incorporated. For this purpose the task 

was formulated as a curve fitting problem in which the following objective function 

has to be minimized: 

    
2 2

1

1
min ( ) min

n

mk CLMk mk CLMk

k

P P Q Q
n

 


    
   (16) 

where Pm and Qm are the measured active and reactive power, respectively, in W and 

var and n is the number of samples simultaneously processed in the estimation 

process. Note that the same objective function will be used to formulate the Improved 

Particle Swarm Optimization below.  

Originally, Particle Swarm Optimization was proposed by Kennedy and Eberhart 

[4] in 1995 and it was inspired by bird flocks’ social behaviors. The idea of this tech-

nique is to produce a number of particles, which will then move around the searching 

space to find the best solution. The procedure of the method is depicted in a flowchart 

in Fig. 1. 

The method starts with populating a number of particles to create a swarm. In fact, 

each particle is simply a parameter vector (13) with randomly selected values (limited 

by a certain range particular to each parameter). The value of each particle indicates 

its position in the swarm, based on which a particle’s fitness can be calculated, whe-

reas fitness is a quantity indicating the accuracy of the solution represented by each 

particle. The fitness should increase with the accuracy, so to achieve this, a reciprocal 

of the objective function (16) is used. 

To change the position of a particle its velocity needs to be calculated as follows: 

 1
1 1 2 2( ) ( )k k k k k k

i i i i g iV V c r P c r P         (17) 

where Vi
k
 and Vi

k+1
 are the actual and next step velocity of i

th
 particle, respectively,  

 is the inertia weight, Pi
k
 is the best previous position of i

th
 particle, Pg

k
 is the best 

global position, 
k
 is the actual i

th
 particle position, c1 and c2 are the acceleration coef-

ficients usually equal to 2 and r1 and r2 are random numbers ranging from 0 to 1. 

After obtaining the velocity of a particle, the position can be updated: 

 1 1k k k
i i iV     (18) 

The process is usually terminated after reaching either maximum number of itera-

tions or satisfactory accuracy of the result. 

The Improved Particle Swarm Optimization proposed in [5] offers an increase in 

both, the precision and the speed of convergence. 
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Fig. 1. Flowchart of PSO 

The improvement has been achieved by introducing a variable inertia weight , 

whereas originally it was a predefined constant. The function modulating  is as fol-

lows: 
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where initial is the initial inertia weight, final is the final inertia weight, itermax is the 

maximum number of iterations, iter is the number of current iteration and n is the 

nonlinear modulation index. Inertia weight defined in such way is decreasing with 

each iteration, consequently reducing the contribution of previous velocity in calculat-

ing the new one. This improves the accuracy and convergence in the final stage of the 

estimation. 

The following section provides a comparison of the introduced method against the 

traditional NLS. 
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4. SIMULATION RESULT  

In order to provide the most reliable results, two case studies have been examined. 

The data was obtained from two separate network models built in DIgSILENT Power 

Factory software. To expose the dynamics of an IM a voltage variation at the ma-

chine’s terminal needs to occur, thus in the first case a voltage step change was simu-

lated, while in the second case a fault was incepted. All the data was exported to Mat-

lab environment at the sampling rate of 1600 Hz. 

4.1. VOLTAGE STEP CHANGE 

The first test network consists only of a programmable voltage source feeding  

a single cage IM through one busbar. The intention was to star with a simple case and 

a simple IM (single cage IM is a machine which can be modeled with fewest parame-

ters, thus it should be easier to estimate its response) and then move to more sophisti-

cated tests. 

To obtain the results using NLS, the Optimization toolbox in Matlab has been 

used. It offers an implementation of the Levenberg-Marquardt algorithm for solving 

curve-fitting problems. 

The methodology of presenting results in both case studies is the same: few data 

sets were obtained and then one set was used to estimate the parameters of the model 

and the others were used as cross-validation data; such test was repeated for each data 

set. 

The first study case consist of 4 data sets obtained by simulating a step change 

with pre-disturbance voltage equal to 1 pu and post-disturbance voltage equal to 0.9, 

0.8, 0.7 and 0.6 pu. Figure 2 presents the results IPSO (0.7 step change). 

The summary of this case study is given in Fig. 3. The first two bars in each expe-

riment present the error of the estimation, whereas the remaining two bars show an 

average error obtained during a cross-validation test. This cross-validation technique 

provides information about generalization capabilities of the model and the estimation 

method. 

It can be clearly seen from the plots that IPSO shows better performance than NLS 

method. One needs to keep in mind that the total performance of a method is based on 

the sum of active and reactive power error, because this is how the objective function 

(16) is formulated. IPSO also has better generalization capabilities, which can be as-

sessed based on the average error. What is interesting is that this average error is de-

creasing for higher voltage deviations, which means that more general solution can be 

obtained. Higher voltage step change provides more information about the speed-

torque characteristic of the model, thus better result can be reached. It seem that the 

NLS method do not take advantage of this fact. 
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Fig. 2. Active a) and reactive b) power estimation with IPSO 
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Fig. 3. Summary of active a) and reactive b) power estimation 

4.2. FAULT TEST 

In the second case study an IEEE 39-bus test network has been used (Fig. 4). The 

system provides more realistic approach also because of a double cage IM connected 

at bus 4. Voltage variation was caused by a fault incepted at bus 16 and lasting 0.2s. 

Different data sets were obtained by setting the fault resistance to 5, 0.5 and 0.05 Ω. 

Figure 5 presents results for the 5 Ω fault resistance data set and Fig. 6 provide  

a summary of this case study. 

In this case study IPSO also shows better performance, especially in terms of reac-

tive power error. It also has to be noted that the double cage IM is more complex then 

the single cage IM used in previous case. The purpose of using more complex model 

to produce the test data in this case was to investigate the ability of a Composite Load 
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Model to approximate different IM, which might be an essential feature, since it is not 

known what kind of machines might be connected to a node in a power system. 

Generalization capabilities again are considerably better in case of IPSO; the aver-

age reactive power error is always at least 3 times lower than in case of NLS. Average 

active power error is not so dramatically different, but still its value is lower when 

IPSO is used. 
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Fig. 4. Diagram of the IEEE 39-bus test system 
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Fig. 5. Active a) and reactive b) power estimation with IPSO 
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Fig. 6. Summary of active a) and reactive b) power estimation 

5. CONCLUSION 

In this paper the Improved Particle Swarm Optimization method is presented. It 

was demonstrated that it can be very practical and efficient for estimation of parame-

ters of the Composite Load Model. It was shown that the accuracy of this new tech-

nique is very high and the cross-validation test proved its excellent generalization 

capabilities. Compared to the standard NLS method, the new one requires a longer 

computationally time, which is rather typical to Artificial Intelligence type techniques. 

Having in mind the availability of modern fast computers, efficient implementation of 

the method is not seen as an issue. 

Contrary to the NLS method, the IPSO is not critical in terms of determining the 

starting point (initial estimate of the vector with unknown parameters). The IPSO just 

requires a definition of a range of the searching space, which is usually known. For 

the same reason the Genetic Algorithms were introduced to assist NLS in solving the 

problem. The idea was to use GA to find the initial guess for the NLS method, which 

could usually reach better accuracy in shorter time. The results presented here prove 

that IPSO, having the same global abilities as GA, can also give very accurate results. 

For offline studies IPSO can be a very good alternative to both, GA and NLS. 
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